1,926 research outputs found

    Pattern-induced anchoring transitions in nematic liquid crystals

    Get PDF
    In this paper we revisit the problem of a nematic liquid crystal in contact with patterned substrates. The substrate is modelled as a periodic array of parallel infinite grooves of well-defined cross section sculpted on a chemically homogeneous substrate which favors local homeotropic anchoring of the nematic. We consider three cases: a sawtooth, a crenellated and a sinusoidal substrate. We analyse this problem within the modified Frank-Oseen formalism. We argue that, for substrate periodicities much larger than the extrapolation length, the existence of different nematic textures with distinct far-field orientations, as well as the anchoring transitions between them, are associated with the presence of topological defects either on or close to the substrate. For the sawtooth and sinusoidal case, we observe a homeotropic to planar anchoring transition as the substrate roughness is increased. On the other hand, a homeotropic to oblique anchoring transition is observed for crenellated substrates. In this case, the anchoring phase diagram shows a complex dependence on the substrate roughness and substrate anchoring strength.Comment: 36 pages, 15 figures, revised version submitted to Journal of Physics: Condensed Matte

    An Embedded-Sensor Approach for Concrete Resistivity Measurement in On-Site Corrosion Monitoring: Cell Constants Determination

    Full text link
    [EN] The concrete electrical resistivity is a prominent parameter in structural health monitoring, since, along with corrosion potential, it provides relevant qualitative diagnosis of the reinforcement corrosion. This study proposes a simple expression to reliable determine resistivity from the concrete electrical resistance (R-E) provided by the corrosion sensor of the Integrated Network of Sensors for Smart Corrosion Monitoring (INESSCOM) we have developed. The novelty here is that distinct from common resistivity sensors, the cell constants obtained by the proposed expression are intended to be valid for any sensor implementation scenario. This was ensured by studying most significant geometrical features of the sensor in a wide set of calibration solutions. This embedded-sensor approach is intended to be applicable for R-E measurements obtained both using potential step voltammetry (PSV, used in the INESSCOM sensor for corrosion rate measurement) and alternating current methods. In this regard, we present a simple protocol to reliably determine R-E, and therefore resistivity, from PSV measurements. It consists in adding a very short potentiostatic pulse to the original technique. In this way, we are able to easy monitor resistivity along with corrosion rate through a single sensor, an advantage which is not usual in structural health monitoring.This research was funded by the pre-doctoral scholarship granted to Jose Enrique Ramon Zamora by the Spanish Ministry of Science and Innovation, grant number FPU13/00911. Funding was also provided by the Spanish Ministry of Economy and Competitiveness under the national program for research, development and innovation geared to societal challenges; project number BIA2016-78460-C3-3-R. The research activity reported in this paper has been partially possible thanks to the project Voltammetric Electronic Tongue for Durability Control in Concrete funded by the Universitat Politecnica de Valencia, project number SP20180245.Ramón, JE.; Martínez, I.; Gandía-Romero, JM.; Soto Camino, J. (2021). An Embedded-Sensor Approach for Concrete Resistivity Measurement in On-Site Corrosion Monitoring: Cell Constants Determination. Sensors. 21(7):1-23. https://doi.org/10.3390/s21072481S12321

    Bilayered smectic phase polymorphism in the dipolar Gay-Berne liquid crystal model

    Get PDF
    We present computer simulations of the Gay–Berne model with a strong terminal dipole. We report the existence of different stable antiferroelectric interdigitated bilayered phases in this model with diverse in-plane organization. The occurrence of these phases depends crucially on the value of the molecular elongation . For = 3 we find an interdigitated bilayered smectic-A phase absent when there is no dipole and a bilayered smectic-T or crystal with positional in-plane tetragonal ordering, different from the hexatic observed in the absence of the molecular dipole. For =4, bilayered smectic-A and in-plane hexatic-ordered smectic-B or crystal phases are observe

    Scaling of the elastic contribution to the surface free energy of a nematic on a sawtoothed substrate

    Get PDF
    We characterize the elastic contribution to the surface free energy of a nematic in presence of a sawtooth substrate. Our findings are based on numerical minimization of the Landau-de Gennes model and analytical calculations on the Frank-Oseen theory. The nucleation of disclination lines (characterized by non-half-integer winding numbers) in the wedges and apexes of the substrate induces a leading order proportional to qlnq to the elastic contribution to the surface free energy density, q being the wavenumber associated with the substrate periodicity.Comment: 7 pages, 6 figures, accepted for publication in Physical Review

    Corrosion Assessment in Reinforced Concrete Structures by Means of Embedded Sensors and Multivariate Analysis-Part 1: Laboratory Validation

    Full text link
    [EN] Reinforced Concrete Structures (RCS) are a fundamental part of a country's civil infrastructure. However, RCSs are often affected by rebar corrosion, which poses a major problem because it reduces their service life. The traditionally used inspection and management methods applied to RCSs are poorly operative. Structural Health Monitoring and Management (SHMM) by means of embedded sensors to analyse corrosion in RCSs is an emerging alternative, but one that still involves different challenges. Examples of SHMM include INESSCOM (Integrated Sensor Network for Smart Corrosion Monitoring), a tool that has already been implemented in different real-life cases. Nevertheless, work continues to upgrade it. To do so, the authors of this work consider implementing a new measurement procedure to identify the triggering agent of the corrosion process by analysing the double-layer capacitance of the sensors' responses. This study was carried out on reinforced concrete specimens exposed for 18 months to different atmospheres. The results demonstrate the proposed measurement protocol and the multivariate analysis can differentiate the factor that triggers corrosion (chlorides or carbonation), even when the corrosion kinetics are similar. Data were validated by principal component analysis (PCA) and by the visual inspection of samples and rebars at the end of the study.This research was funded by the Spanish Government, grant number PID2020-119744RB-C21 funded by MCIN/AEI/10.13039/501100011033.Ramón Zamora, JE.; Lliso-Ferrando, JR.; Martínez-Ibernón, A.; Gandía-Romero, JM. (2023). Corrosion Assessment in Reinforced Concrete Structures by Means of Embedded Sensors and Multivariate Analysis-Part 1: Laboratory Validation. Sensors. 23(21):1-19. https://doi.org/10.3390/s23218869119232

    Post-mortem findings in Spanish patients with COVID-19; a special focus on superinfections

    Full text link
    IntroductionWhole-body autopsies may be crucial to understand coronavirus disease 2019 (COVID-19) pathophysiology. We aimed to analyze pathological findings in a large series of full-body autopsies, with a special focus on superinfections. MethodsThis was a prospective multicenter study that included 70 COVID-19 autopsies performed between April 2020 and February 2021. Epidemiological, clinical and pathological information was collected using a standardized case report form. ResultsMedian (IQR) age was 70 (range 63.75-74.25) years and 76% of cases were males. Most patients (90%,) had at least one comorbidity prior to COVID-19 diagnosis, with vascular risk factors being the most frequent. Infectious complications were developed by 65.71% of the patients during their follow-up. Mechanical ventilation was required in most patients (75.71%) and was mainly invasive. In multivariate analyses, length of hospital stay and invasive mechanical ventilation were significantly associated with infections (p = 0.036 and p = 0.013, respectively). Necropsy findings revealed diffuse alveolar damage in the lungs, left ventricular hypertrophy in the heart, liver steatosis and pre-infection arteriosclerosis in the heart and kidneys. ConclusionOur study confirms the main necropsy histopathological findings attributed to COVID-19 in a large patient series, while underlining the importance of both comorbid conditions and superinfections in the pathology

    Association of Candidate Gene Polymorphisms With Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort

    Get PDF
    Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2, 445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionizationtime of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD

    Statistics of extreme objects in the Juropa Hubble Volume simulation

    Get PDF
    We present the first results from the JUropa huBbLE volumE (Jubilee) project, based a large N-body, dark matter-only cosmological simulation with a volume of V=(6h1Gpc)3V=(6 h^{-1}\mathrm{Gpc})^3, containing 60003^3 particles, performed within the concordance Λ\LambdaCDM cosmological model. The simulation volume is sufficient to probe extremely large length scales in the universe, whilst at the same time the particle count is high enough so that dark matter haloes down to 1.5×1012h1M1.5\times10^{12} h^{-1}\mathrm{M}_\odot can be resolved. At z=0z = 0 we identify over 400 million haloes. The cluster mass function is derived using three different halofinders and compared to fitting functions in the literature. The distribution of clusters of maximal mass across redshifts agrees well with predicted masses of extreme objects, and we explicitly confirm that the Poisson distribution is very good at describing the distribution of rare clusters. The Poisson distribution also matches well the level to which cosmic variance can be expected to affect number counts of high mass clusters. We find that objects like the Bullet cluster exist in the far-tail of the distribution of mergers in terms of relative collisional speed. We also derive the number counts of voids in the simulation box for z=0z = 0, 0.50.5 and 11.Comment: Version 2. 12 pages, 9 figures. Accepted by MNRA
    corecore